Se p 20 08 Sweeping Algebraic Curves for Singular Solutions ∗
نویسندگان
چکیده
Many problems give rise to polynomial systems. These systems often have several parameters and we are interested to study how the solutions vary when we change the values for the parameters. Using predictor-corrector methods we track the solution paths. A point along a solution path is critical when the Jacobian matrix is rank deficient. The simplest case of quadratic turning points is well understood, but these methods no longer work for general types of singularities. In order not to miss any singular solutions along a path we propose to monitor the determinant of the Jacobian matrix. We examine the operation range of deflation and relate the effectiveness of deflation to the winding number. Computational experiments on systems coming from different application fields are presented. 2000 Mathematics Subject Classification. Primary 65H10. Secondary 14Q99, 68W30.
منابع مشابه
Jacobi Curves: Computing the Exact Topology of Arrangements of Non-singular Algebraic Curves
We present an approach that extends the BentleyOttmann sweep-line algorithm [3] to the exact computation of the topology of arrangements induced by non-singular algebraic curves of arbitrary degrees. Algebraic curves of degree greater than 1 are difficult to handle in case one is interested in exact and efficient solutions. In general, the coordinates of intersection points of two curves are no...
متن کاملSymbolic Parametrization of Curves
If algebraic varieties like curves or surfaces are to be manipulated by computers, it is essential to be able to represent these geometric objects in an appropriate way. For some applications an implicit representation by algebraic equations is desirable, whereas for others an explicit or parametric representation is more suitable. Therefore, transformation algorithms from one representation to...
متن کاملSe p 20 04 Integrable Deformations of Algebraic Curves . ∗
A general scheme for determining and studying integrable deformations of algebraic curves, based on the use of Lenard relations, is presented. We emphasize the use of several types of dynamical variables : branches, power sums and potentials.
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملSweeping algebraic curves for singular solutions
Many problems give rise to polynomial systems. These systems often have several parameters and we are interested to study how the solutions vary when we change the values for the parameters. Using predictor-corrector methods we track the solution paths. A point along a solution path is critical when the Jacobian matrix is rank deficient. The simplest case of quadratic turning points is well und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008